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AI IN EARTH OBSERVATION

Academic publications in Scopus
TITLE-ABS-KEY ( "deep learning" AND ( "GIS" OR "Earth Observation" OR "Remote Sensing" OR "geospatial" ) )

Source: Scopus
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GUIDELINES & FRAMEWORKS

Source: Fjeld et al.(2020) Principled Artificial Intelligence: Mapping Consensus in Ethical and Rights-Based 

Approaches to Principles for AI. Berkman Klein Center Research Publication No 2020-1
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FAIRNESS / BIAS



TYPES OF BIAS

Suresh, H. & Guttag, J. V. A Framework for Understanding Unintended Consequences 

of Machine Learning. (2020). 



Source: Gevaert, C. (2022) EARSeL Cyprus 2022.



FAIRNESS?
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SIMPLE    MULTI-CLASS   AUDIT FOR BIASES



BIAS METRICS

Source: Aequitas documentation 

https://dssg.github.io/aequitas/metrics.html



• 100 study areas of 250 x 250 m

• Distributed over poverty groups, city size

• Manually digitized over Google Satellite imagery
→ could cause issues regarding temporal 
differences or shift in imagery

EXAMPLE – BUILDING 
DETECTION IN 
TANZANIA

Source: Gevaert, C. (2022) EARSeL Cyprus 2022.



CITY SIZE   POVERTY   BUILDING SIZE

SENSITIVE ATTRIBUTES

WorldPop

DOI : 10.5258/SOTON/WP00290

WSF-2019

https://download.geoservice.dlr.de/WSF2019/files/

https://hub.worldpop.org/doi/10.5258/SOTON/WP00290


ACCURACY – EXAMPLE LOW POVERTY, BIG CITY

OSM    BING    GOOGLE

Source: Gevaert, C. (2022) EARSeL Cyprus 2022.



ACCURACY – EXAMPLE HIGH POVERTY, RURAL

OSM    BING    GOOGLE

Source: Gevaert, C. (2022) EARSeL Cyprus 2022.



Fraction of true positives of a group divided by the 
labelled positives (=true positive + false positive) of the 
group.

PRECISION

OSM GOOGLE

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒈 =
𝑻𝑷𝒈

𝑳𝑷𝒈
= 𝑷𝒓(෡𝒀 = 𝟏| 𝒀 = 𝟏, 𝑨 = 𝒂𝒊)

OSM

More precise for larger cities, biased against smaller cities

More precise for lower poverty levels, biased for poverty

Google

More precise for rural areas, biased against smaller cities

More precise for higher poverty levels, biased for poverty

Source: Gevaert, C. (2022) EARSeL Cyprus 2022.



EXPLAINABILITY



MOTIVATIONS FOR EXPLAINABLE AI

Gevaert (2022) Explainable AI for earth observation: A review including societal and regulatory perspectives, 

Int. Journal of Applied EO and Geoinfo, 112, 102869. doi: 10.1016/j.jag.2022.102869

JustifyControl Improve Discover



TYPES OF EXPLAINABLE AI IN EARTH OBSERVATION

Gevaert (2022) Explainable AI for earth observation: A review including societal and regulatory perspectives, 

Int. Journal of Applied EO and Geoinfo, 112, 102869. doi: 10.1016/j.jag.2022.102869



INTERPRETABLE MODELS

Marcos, D., Lobry, S., Tuia, D. 2019. Semantically Interpretable Activation Maps: what-where-how explanations with CNNs. ICCV 2019



INTERPRETABLE MODELS

Marcos, D., Lobry, S., Tuia, D. 2019. Semantically Interpretable Activation Maps: what-where-how explanations with CNNs. ICCV 2019



Features:

Color, texture, time, other sensors, elevation….

• 49% of the publications

• Identify influential factors & induce sparsity.

FEATURE SELECTION & 
IMPORTANCE



Source: Najmi, A. (2021) Integrating Remote Sensing and Street View Images to Map Slums Using Deep Learning Approach (MSc thesis).

SALIENCY MAPS



ARE RANDOM FORESTS INTERPRETABLE?

CRITIQUES



Gevaert (2022) Explainable AI for earth observation: A review including societal and regulatory perspectives, 

Int. Journal of Applied EO and Geoinfo, 112, 102869. doi: 10.1016/j.jag.2022.102869



EXPLAINABILITY – IS THIS 
MODEL SUITABLE?

GENERALIZATION CAPABILITY



ACCRA    DAR ES SALAAM  ZANZIBAR 

Gevaert, C.M. & Belgiu, M. (2022) Assessing the generalization capability of deep learning networks for aerial 

image classification using landscape metrics. International Journal of Applied Earth Observation and Geoinformation, 114. 



Gevaert, C.M. & Belgiu, M. (2022) Assessing the generalization capability of deep learning networks for aerial 

image classification using landscape metrics. International Journal of Applied Earth Observation and Geoinformation, 114. 



Gevaert, C.M. & Belgiu, M. (2022) Assessing the generalization capability of deep learning networks for aerial 

image classification using landscape metrics. International Journal of Applied Earth Observation and Geoinformation, 114. 

SIMILARITY SCORE



Gevaert, C.M. & Belgiu, M. (2022) Assessing the generalization capability of deep learning networks for aerial 

image classification using landscape metrics. International Journal of Applied Earth Observation and Geoinformation, 114. 

LANDSCAPE METRICS  CORRELATION



Reference data K-means clustering (k=2)

Gevaert, C.M. & Belgiu, M. (2022) Assessing the generalization capability of deep learning networks for aerial 

image classification using landscape metrics. International Journal of Applied Earth Observation and Geoinformation, 114. 



CONCLUSIONS
Biases are also present in EO data – methods for auditing are there, 
but the challenge is identifying the sensitive attributes and raising 
awareness that we need to audit for them.

Need methods to predict generalizability. – needed to provide 
explanations that legislation requires & understand when a model can 
be used.

Explanations in ML for EO not new, but changing

Limitations of explainability in EO:

▪ Which algorithms are considered interpretable

▪ Focus on technical audience

▪ Lack of testing of whether explanations are adequate
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