Kyoto University

October 4, 2023

RESPONSIBLE AI FOR EARTH OBSERVATION

CAROLINE GEVAERT

c.m.gevaert@utwente.nl

*This work is partially funded by the NWO-VENI project no. 18091

AI IN EARTH OBSERVATION

Academic publications in Scopus TITLE-ABS-KEY ("deep learning" AND ("GIS" OR "Earth Observation" OR "Remote Sensing" OR "geospatial"))

GUIDELINES & FRAMEWORKS

FAIRNESS / BIAS

TYPES OF BIAS

Suresh, H. & Guttag, J. V. A Framework for Understanding Unintended Consequences of *Machine Learning*. (2020).

FAIRNESS?

	1	2
1	TP	FN
2	FP	ΤN

	1	2	3
1	TP		
2		TP	
3			TP

Attribute 1

	1	2
1	TP	FN
2	FP	ΤN

Attribute 2

	1	2
1	TP	FN
2	FP	ΤN

AUDIT FOR BIASES

SIMPLE

MULTI-CLASS

BIAS METRICS

Table 2: List of group metrics.

Name	Notation	Definition
Prevalence	$Prev_g = LP_g / g = \Pr(Y=1 A=a_i)$	fraction of entities within a group which true outcome was positive.
Predicted Prevalence	$PPrev_g = PP_g / g = \Pr(\widehat{Y}=1 A=a_i)$	fraction of entities within a group which were predicted as positive.
Predicted Positive	$PPR_g = PP_g / K = Pr(a=a_i \widehat{Y}=1)$	fraction of the entities predicted as positive that belong to a certain
Rate		group.
False Discovery Rate	$FDR_g = FP_g / PP_g = \Pr(Y=0 \widehat{Y}=1,A=a_i)$	fraction of false positives of a group within the predicted positive
		of the group
False Omission Rate	$FOR_g = FN_g / PN_g = \Pr(Y=1 \widehat{Y}=0,A=a_i)$	fraction of false negatives of a group within the predicted negative
		of the group
False Positive Rate	$FPR_g = FP_g / LN_g = \Pr(\widehat{Y}=1 Y=0,A=a_i)$	fraction of false positives of a group within the labeled negative of
		the group
False Negative Rate	$FNR_g = FN_g / LP_g = \Pr(\widehat{Y}=0 Y=1,A=a_i)$	fraction of false negatives of a group within the labeled positives of
		the group

EXAMPLE – BUILDING DETECTION IN TANZANIA

- 100 study areas of 250 x 250 m
- Distributed over poverty groups, city size
- Manually digitized over Google Satellite imagery

 → could cause issues regarding temporal differences or shift in imagery

SENSITIVE ATTRIBUTES

CITY SIZE

POVERTY

BUILDING SIZE

WSF-2019 https://download.geoservice.dlr.de/WSF2019/files/ WorldPop **DOI :** <u>10.5258/SOTON/WP00290</u>

ACCURACY – EXAMPLE LOW POVERTY, BIG CITY

OSM

BING

GOOGLE

ACCURACY – EXAMPLE HIGH POVERTY, RURAL

OSM

BING

GOOGLE

Source: Gevaert, C. (2022) EARSeL Cyprus 2022.

PRECISION

$$Precision_g = \frac{TP_g}{LP_g} = Pr(\widehat{Y} = 1 | Y = 1, A = a_i)$$

Fraction of true positives of a group divided by the labelled positives (=true positive + false positive) of the group.

OSM

3 (Num: 2.110), 0.22 3 (Num: 1,623), 0.39 1 (Num: 6,105), 0.06 0.69 UC size · 1 (Num: 4.026) UC size 2 (Num: 3.124), 0.26 2 (Num: 4.367), 0.16 4 (Num- 1 837) 0 24 4 (Num: 1.506) 0.05 3 (Num: 5,516), 0.12 3 (Num: 3.540 0.60 1 (Num: 2,148), 0.19 1 (Num: 1,579), 0.12 poverty poverty 2 (Num: 1,965), 0.27 2 (Num: 1.454), 0.11 4 (Num: 4,790), 0.07 0.54 3 (Num: 4,063), 0.13 0.54 -3 (Num: 3.03 1 (Num: 3,080), 0.12 1 (Num: 1,749), 0.42 building size building_size 2 (Num: 3,450), 0,14 2 (Num: 3,016), 0.39 0.49 4 (Num: 3,826), 0.14 4 (Num: 2.477 0.2 0.6 0.8 1.00.6 0.8 1.0 0.4 0.0 0.2 0.4 Source: Gevaert, C. (2022) EARSeL Cyprus 2022. Absolute Metric Magnitude Absolute Metric Magnitude

OSM

More precise for larger cities, biased against smaller cities More precise for lower poverty levels, biased for poverty

Google

More precise for rural areas, biased against smaller cities More precise for higher poverty levels, biased for poverty

GOOGLE

EXPLAINABILITY

MOTIVATIONS FOR EXPLAINABLE AI

Gevaert (2022) Explainable AI for earth observation: A review including societal and regulatory perspectives, *Int. Journal of Applied EO and Geoinfo*, 112, 102869. doi: 10.1016/j.jag.2022.102869

TYPES OF EXPLAINABLE AI IN EARTH OBSERVATION

INTERPRETABLE MODELS

INTERPRETABLE MODELS

Crowd scenicness: 8.00

Crowd scenicness: 2.60

FEATURE SELECTION & IMPORTANCE

Features:

Color, texture, time, other sensors, elevation....

- 49% of the publications
- Identify influential factors & induce sparsity.

SALIENCY MAPS

CRITIQUES

ARE RANDOM FORESTS INTERPRETABLE?

Methods in EO: Feature selection* and saliency maps

EXPLAINABILITY – IS THIS MODEL SUITABLE?

GENERALIZATION CAPABILITY

DAR ES SALAAM

ZANZIBAR

SIMILARITY SCORE

LANDSCAPE METRICS

Shannon's Eveness

SHEI

Code	Name	in under
NP	Number of patches	strong co
PD	Patch Density	
ED	Edge Density	Landsca
LSI	Landscape Shape Index	
AREA_MN	Patch Area (Mean)	
SHAPE_MN	Shape Index (Mean)	
		NP
CUADE CD	Change Index (Standard Deviation	PD
SHAPE_SD	Shape index (Standard Deviation -	ED
FRAC_MN	Fractal Dimension Index (Mean)	LSI
FRAC_SD	Fractal Dimension Index (SD)	AREA_A
CONTIG_MN	Contiguity	SHAPE
CONTIG_SD	Contiguity Sd	SHAPE
CONTAG	Contagion	FRAC N
SHDI	Shannon's Diversity Index	FRAC S
		CONTI
		CONTIC
SIDI	Simpson's Diversity Index	CONTA
5101	Simpson 5 Diversity muck	SHDI
MSIDI	Modified Simpson's Diversity	SIDI
	Index	MSIDI

CORRELATION

The correlation between the landscape metric similarity scores and the classification F1-scores, considering only Accra and Dar es Salaam. Cells highlighted in underline values indicate moderate correlations and bold values indicate strong correlations.

	Landscape metric	Correlation to the F1-score					
dex		Segment	Segmentation			Clustering	
)		L1	L2	L3	k=2	k=3	
	NP	0.66	0.56	0.58	0.66	0.59	0.83
ard Deviation	PD	0.67	0.61	0.66	0.71	0.69	0.81
ard Deviation -	ED	0.58	0.57	0.73	0.79	0.74	0.88
index (Mean)	LSI	0.50	0.30	0.46	0.76	0.66	0.78
index (SD)	AREA_AM	0.27	0.29	0.29	0.25	0.21	0.82
	SHAPE_MN	0.67	0.54	0.09	0.10	0.40	0.66
	SHAPE_SD	0.05	0.05	0.49	0.35	0.29	0.72
	FRAC_MN	-0.08	0.32	0.2	0.75	0.75	0.59
/ Index	FRAC_SD	-0.06	0.02	-0.03	0.75	0.75	0.12
	CONTIG_MN	0.22	0.06	0.03	0.27	0.20	0.41
	CONTIG_SD	0.27	0.26	-0.11	0.20	0.26	0.60
Index	CONTAG	0.51	0.30	0.38	0.65	0.50	0.81
Index	SHDI	_	_	_	0.14	0.28	0.82
Diversity	SIDI	-	_	_	0.13	0.32	0.82
,	MSIDI	_	-	_	0.14	0.32	0.82
Index	SHEI	_	-	_	0.14	0.28	0.82

CONCLUSIONS

Biases are also present in EO data – methods for auditing are there, but the **challenge is identifying the sensitive attributes** and raising awareness that we need to audit for them.

Need **methods to predict generalizability**. – needed to provide explanations that legislation requires & understand when a model can be used.

Explanations in ML for EO not new, but changing

Limitations of explainability in EO:

- Which algorithms are considered **interpretable**
- Focus on technical audience
- Lack of testing of whether explanations are adequate

Kyoto University

October 4, 2023

RESPONSIBLE AI FOR EARTH OBSERVATION

CAROLINE GEVAERT

c.m.gevaert@utwente.nl

*This work is partially funded by the NWO-VENI project no. 18091